Polynomial Bounds for Oscillation of Solutions of Fuchsian Systems

نویسندگان

  • Sergei YAKOVENKO
  • SERGEI YAKOVENKO
چکیده

We study the problem of placing effective upper bounds for the number of zeros of solutions of Fuchsian systems on the Riemann sphere. The principal result is an explicit (non-uniform) upper bound, polynomially growing on the frontier of the class of Fuchsian systems of a given dimension n having m singular points. As a function of n, m, this bound turns out to be double exponential in the precise sense explained in the paper. As a corollary, we obtain a solution of the so called restricted infinitesimal Hilbert 16th problem, an explicit upper bound for the number of isolated zeros of Abelian integrals which is polynomially growing as the Hamiltonian tends to the degeneracy locus. This improves the exponential bounds recently established by A. Glutsyuk and Yu. Ilyashenko. 1. Zeros of solutions of Fuchsian systems and restricted infinitesimal Hilbert 16th problem 1.1. Fuchsian systems and zeros of their solutions Let Ω be a meromorphic (rational) n×n-matrix 1-form on the Riemann sphere CP 1 with a singular (polar) locus Σ = {τ1, . . . , τm} consisting of m distinct points. The linear system of Pfaffian equations (1.1) dx− Ωx = 0, Ω = ω11 · · · ω1n .. . . . .. ωn1 · · · ωnn  , x = x1 .. xn  ,

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Global Non-oscillation of Linear Ordinary Differential Equations with Polynomial Coefficients

Based on a new explicit upper bound for the number of zeros of exponential polynomials in a horizontal strip, we obtain a uniform upper bound for the number of zeros of solutions to an ordinary differential equation near its Fuchsian singular point, provided that any two distinct characteristic exponents at this point have distinct real parts. The latter result implies that a Fuchsian different...

متن کامل

Fractional Calculus of Weyl Algebra and Fuchsian Differential Equations

We give a unified interpretation of confluences, contiguity relations and Katz’s middle convolutions for linear ordinary differential equations with polynomial coefficients and their generalization to partial differential equations. The integral representations and series expansions of their solutions are also within our interpretation. As an application to Fuchsian differential equations on th...

متن کامل

Numerical solution for the risk of transmission of some novel coronavirus (2019-nCov) models by the Newton-Taylor polynomial solutions

In this paper we consider two type of mathematical models for the novel coronavirus (2019-nCov), which are in the form of a nonlinear differential equations system. In the first model the contact rate, , and transition rate of  symptomatic infected indeviduals to the quarantined infected class, , are constant. And in the second model these quantities are time dependent. These models are the...

متن کامل

Properties of the Exceptional (X`) Laguerre and Jacobi Polynomials

We present various results on the properties of the four infinite sets of the exceptional X` polynomials discovered recently by Odake and Sasaki [Phys. Lett. B 679 (2009), 414–417; Phys. Lett. B 684 (2010), 173–176]. These X` polynomials are global solutions of second order Fuchsian differential equations with ` + 3 regular singularities and their confluent limits. We derive equivalent but much...

متن کامل

Power Series -Aftertreatment Technique for Nonlinear Cubic Duffing and Double-Well Duffing Oscillators

Modeling of large amplitude of structures such as slender, flexible cantilever beam and fluid-structure resting on nonlinear elastic foundations or subjected to stretching effects often lead to strongly nonlinear models of Duffing equations which are not amendable to exact analytical methods. In this work, explicit analytical solutions to the large amplitude nonlinear oscillation systems of cub...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1988